Network Livermore Time Sharing System (NLTSS)

S Terry Brugger
Madhavi Gandhi
Greg Streletz
Department of Computer Science
University of California, Davis

March 7, 2001

Abstract

NLTSS was a distributed, object-oriented
operating system based on a pure message
passing kernel and capabilities. This paper
will describe the goals of its development, an
overview of the system as well as a detailed
examination of some of its subsystems and
what we learned from its development.

1 Introduction

The history of Lawrence Livermore National
Lab is closely intertwined with the history of
supercomputing. Ever since the lab’s found-
ing in the early 1950’s, it has used state of
the art machines to solve difficult scientific
problems. In the 1960’s it started looking
at ways that it could better utilize the re-
sources of these huge machines and better
serve the scientists that used them. From
this, the Livermore Time Sharing System

(LTSS) was born. By the late 1970’s with
the advent of the microprocessor, local area
networks and advances in operating system
technology the Livermore Computing Cen-
ter set forth to design a new operating sys-
tem. This 4th generation operating system
was ”[e]xplicitly designed to support multi-
processing, distribution, extendable object
oriented, uniform local & remote IPC, [and]
least privilege access control.” [21] This suc-
cessor to LTSS was a specific implementa-
tion of a larger framework called LINCS
(Livermore Integrated Network Computing
System) which allowed distributed access to
abstract object interfaces [20]. Designed
with this network functionality in mind, the
new operating system was called the Net-

work Livermore Time Sharing System, or
NLTSS.

The first three years of the project
concentrated on research and development
of prototypes examining various aspects

of multicomputing, network protocols and
servers. This period was followed by four
years of intense development on the system.
Beginning around 1987, NLTSS entered into
service on the Cray XMP running alongside
LTSS through the use of a virtual hardware
abstraction layer [20]. In 1988 NLTSS en-
tered full production on the Cray XMP and
later the YMP. It remained in service un-
til shortly after Noon on March 22, 1993
when the last NLTSS installation on the
Cray YMP was shutdown [9] and replaced
with Cray’s version of UNIX (UNICOS).

This paper will examine the goals of
NLTSS, take an overview look at the sys-
tem from the contemporary viewpoint of
distributed and object based systems, then
it will look in detail at NLTSS’s use of ca-
pabilities, it’s CPU and file servers and it’s
message passing system.

2 Goals

The primary goal of NLTSS was to de-
sign an operating system which allowed
the application developer to take advan-
tage of both the multiprocessing capabili-
ties of supercomputer class machines and
the distributed computing resources of a
network of computers. The NLTSS de-
signers referred to this as a Multicomput-
ing environment[21, 24]. The general goals
of the system were to facilitate extendibil-
ity, be backwards compatible with LTSS
and use standard interfaces [21, 24]. Con-
trasting these goals with operating sys-
tem technology at the time, they decided

that stage 3 of Kuhn’s Model of Scien-
tific Progress had been reached and rather
than try to patch existing systems such as
LTSS or UNIX, they decided to propose
an alternative model [21]. They considered
UNIX unworkable as it had problems (at
that time) with extendibility, security, dis-
tributed computing, multiprocessing, and
its implementation had numerous problems
such as a lack of clean modularization [21].

The designers established numerous goals
in order to achieve the general goal of sup-
porting a multicomputing environment. For
instance, the system should do symmetric
multiprocessing of the kernel, servers and
other user level applications. This symmet-
rical architecture should be general and al-
low for all tasks to compute and block for
I/O. Any task synchronization and switch-
ing should be low cost. The system libraries
and scheduler should allow for asynchronous
system calls and the ability to wait on an
arbitrary number of processes. Finally, the
system should perform deadlock prevention
and detection [21, 20]. There were ad-
ditional requirements to support the dis-
tributed environment in a transparent man-
ner. For instance, the syntax to access local
and remote resources should be the same
and, in return, the resource should behave
the same way regardless of where it was ac-
cessed from. The performance difference be-
tween a local or remote access should be as
minimal as possible. There should be a sep-
aration of machine names from the human-
readable names which allows the human-
readable names to be completely indepen-
dent of resource and access location. An

object should have the same access rights
to a resource regardless of where it’s access-
ing the resource from. All accounting and
allocation within the system should be uni-
form. Finally, the implementation should
be such that access is only allowed to ob-
jects via well defined interfaces [21, 24, 20].

In order to achieve a highly scalable sys-
tem, the designers decided early to use
a pure message passing architecture with
built-in support for the client-server model.
For that reason, numerous goals were made
for the interprocess communication (IPC),
first and foremost being network trans-
parency: IPC calls should look the same
whether the client and server are on the
same or different machines. To that end,
the protocols should be low latency and
high throughput. What latency did ex-
ist should be hidden as much as possible
and the message system may be acceler-
ated through the use of specialized hard-
ware. Processes should have a great deal of
latitude in how they use IPC. This latitude
included the ability to use arbitrary commu-
nications structures and message lengths,
the ability to communicate with any other
process (subject to the security policy and
mechanism), the ability to use multiple con-
current message streams, and the ability
to use both synchronous and asynchronous
communication. The message system also
needed to be clean in its design and im-
plementation through the use of standard
request & reply syntax & encodings, sep-
aration of data & control, and separation
of requests & replies. Finally, the message
system would provide flow and error control

and protect the data streams [21, 24, 20).

While NLTSS was a revolutionary ad-
vance in operating system architecture at
the time, it also needed to support the
legacy LTSS environment that its user base
was used to, and which existing applications
were designed for. To that end, NLTSS
needed to support existing user interfaces
(specifically the terminal interface) and net-
work services. It also needed to emulate
the LTSS at the system interface level so
that existing application source code could
be moved to NLTSS with little to no effort.
Finally, it should support incremental evo-
lution by allowing applications to use some
of the new functionality while other parts of
the code continued to use the legacy inter-
faces [24, 20].

With the Livermore Computing Center’s
long history of utilizing and operating su-
percomputers they added some additional
considerations to the goals of the system
which came more from practical experience
than purely academic operating system de-
sign. For example, one goal was to mini-
mize the human cost involved in learning,
maintaining, developing for, or in any other
way using the system. The system should
be designed under the principle that high
performance (and, by extension, high cost)
computing resources should be available to
as large a user base as possible (not just the
users in one building for instance). Finally,
the system should make it easy to integrate
new technology - it needed to be flexible
and expandable. This implied a modular
or object-oriented design [24, 20].

Finally, the designers recognized the is-

sues common to all distributed and object-
based systems as discussed in the overview,
below, so there were commensurate goals for
the system to deal with those issues [21, 20].

3 Overview

3.1 Issues in Distributed oper-
ating systems

NLTSS was designed from the beginning to
be a distributed operating system. As such,
it has addressed most of the issues inherent
in distributed operating systems. The com-
mon issues in distributed operating systems
[18] and how these are handled in NLTSS
are discussed below.

3.1.1 Global Knowledge

Due to the lack of a global clock and global
memory as well as unpredictable message
delays, determining the entire state of the
system at any given moment in time is im-
possible. Thus, it is necessary to use effi-
cient algorithms to approximate this state.
NLTSS had no built-in support to achieve
global consensus. The NLTSS designers
saw this functionality as being under the
purview of the application programmer [15].

3.1.2 Naming

The various objects to which a system refers
need to be named in some way. The issue
of naming is especially important in a dis-
tributed system because the various entities
of the system need to understand a common

naming convention, such that there must be
a global name space. NLTSS had such a
global name space implemented with a Di-
rectory Server that maps human readable
names to machine oriented names. This
separation is important as it frees users from
the need to follow any naming convention
just so the system can locate a given object.
It also allows for multiple human readable
names for any single object. NLTSS also al-
lows for multiple copies of the same object.
Objects in NLTSS can be extended to build
new types. Names are ASCII strings up to
16 characters in length. This was seen as
a major improvement over NLTSS’s prede-
cessor, LTSS, which only allowed 8-10 char-
acter names. The namespace in NLTSS did
not need to support any type of automatic
object replication[21, 24, 20].

3.1.3 Scalability

A distributed operating system should guar-
antee that the system performance does
not degrade as more system resources are
added. Certain operating system techniques
that work well for a small number of re-
sources may not work well when the system
becomes substantially larger. NLTSS was
designed such that all the aspects of its dis-
tributed nature were abstracted by the mes-
sage system, which did not pose any limita-
tions on the scalability of the system [13].

3.1.4 Compatibility

A distributed system may be composed
of heterogeneous resources. Compatibility

refers to the ability of the operating sys-
tem to provide portability across these var-
ious resources. NLTSS was an implementa-
tion of the LINCS architecture, which spec-
ified a standard architecture (including net-
work and transport layer protocols) for ac-
cessing abstract object interfaces [20]. The
NLTSS kernel and many of its lower level
components were designed exclusively for
the Cray massive vector architecture. In
particular, it was designed to accommodate
many of the irregularities in the Cray mem-
ory and process model [15, 13]. Other com-
ponents such as the file server were compat-
ible across various architectures such as the
VAX. NLTSS provided no execution-level
compatibility or binary compatibility as it
would have been prohibitively expensive.

3.1.5 Process Synchronization

When multiple processes can access a
shared resource, the operating system must
synchronize access to the resource in order
to ensure integrity. Typically, this is accom-
plished through mutual exclusion. However,
due to the lack of shared memory in a dis-
tributed system, providing mutual exclusion
is a challenge. As such, NLTSS did not
provide a mechanism to detect and recover
from deadlock, nor to provide mutual ex-
clusion. These were seen as being under
the purview of the application developer.
A simple mechanism that application devel-
opers could use to achieve mutual exclusion
was through the use of file locking. Alterna-
tively, they could implement their own sys-
tem using the flexibility of NLTSS’s message

system which allowed both synchronous
(blocking) and asynchronous (non-blocking)
communication between processes [21, 20].
There were plans to add a semaphore server,
however it was never implemented due to
lack of user demand. There were numer-
ous times throughout the development of
NLTSS where the servers themselves would
go into deadlock. The solution to this was
fixing the servers such that the chain of de-
pendencies that caused the deadlock would
not occur (deadlock avoidance) [15].

3.1.6 Resource Management

In a distributed system, the resources avail-
able to a process can be both local and re-
mote. The operating system must provide
a common method for accessing these re-
sources. NLTSS is designed to deal with
this issue by considering all resources to be
remote [21]. Typically, NLTSS migrates the
data to the computation. It does, how-
ever, have the ability to perform computa-
tion migration through the use of remote
servers and message passing. NLTSS also
provides distributed scheduling; it can dis-
tribute the computational load amongst dif-
ferent nodes through its process schedul-
ing mechanism [21, 24]. Other consider-
ations were given in NLTSS’s design with
respect to resource management, such as
support for accounting of all resources, ad-
ministrative allocation of resources and an
avoidance on any restrictions on the number
or size of resources that an object can use
(21, 24, 20]. NLTSS separated the low-level
hardware access driver (which had to reside

on the machine with the hardware that it
controlled) from the policy implementation
on the server (such as the File Server or the
Process Server which, could be located any-
where on the network) [5].

3.1.7 Security

The two fundamental aspects of security
that a distributed system should address are
authentication and authorization. Authen-
tication is the means by which a user is ver-
ified to be who they say they are and au-
thorization is the means by which the use
of resources is restricted to certain users. In
NLTSS, authentication is provided through
the use of an Account Server [17]. Au-
thorization is provided through the use of
capabilities[16]. Numerous other considera-
tions were given to security in NLTSS’s de-
sign. For example it has a consistent mul-
tilevel mandatory access control and secu-
rity policy for all resources, least privilege
discretionary access control to all resources
with rights passing, and it allows multiple
access rights for a given resource. Finally,
its security is based on the principle of mu-
tual suspicion between nodes [21, 24, 20].

3.1.8 Structuring

The structuring of an operating system
refers to the method by which the operat-
ing system components are organized. The
major design decision in an operating sys-
tem is if it is going to be monolithic or use
a microkernel with services separated into
individual processes. The microkernel ap-

proach lends itself much better to an object-
oriented design (where each component is
an object with a well defined interface)
and the client-server model (where some
processes or objects are dedicated servers
that handle requests from other processes or
servers). NLTSS was designed as a pure mi-
crokernel with separate drivers for low level
components and user level servers to provide
system services. Everything in NLTSS, in-
cluding the user level servers and all other
processes, was considered an object, which
places NLTSS in the realm of an object-
oriented operating system. Another design
technique that NLTSS leveraged was the
principle of separation of policy and mecha-
nism which allowed for maximum flexibility
of the system.

3.2 Issues with Distributed
Object-Based Program-
ming Systems

The use of the object paradigm for cre-
ating distributed systems can result in a
much more extendable, flexible, program-
mer friendly architecture. These systems
are called Distributed Object-Based Pro-
gramming Systems (DOBPS) [4]. In the
creation of a DOBPS, issues, beyond those
of a generic distributed system, need to be
addressed. We will briefly explain what
these issues (based on the ontology given
in [4]) are and how NLTSS addresses them.

3.2.1 Object Structure

As objects are central to the design of a
DOBPS;, their structure greatly influences
the design of the entire system. The two
main attributes of object structure are the
granularity and composition of the objects.

Granularity The granularity of objects
refers to their relative size. There is a
tradeoff between how much control the sys-
tem has over the objects and how many of
the system resources are needed to man-
age those objects. NLTSS considered most
everything that the operating system dealt
with, such as processes, files, terminals and
text strings, to be an object. Hence, NLTSS
supported large, medium and small grained
objects. It should be noted that not all ob-
jects in NLTSS were visible to, and hence
managed by, the system. For example,
linked lists that existed solely within a user

application would not be managed directly
by NLTSS [7].

Composition The object composition is
the relationship between objects & pro-
cesses in the system. If processes are part
of the object, it’s an active composition. If
processes exist outside of objects, the sys-
tem has a passive object composition. Ac-
tive objects are more resource intensive (as
multiple processes may be required to per-
form a task - one for each object), but they
are more amenable to client-server program-
ming. Although processes are objects in

NLTSS, not all objects have processes asso-
ciated with them in NLTSS, hence NLTSS

has a passive object composition.

3.2.2 Object Management

Object management deals with the as-
pects that a DOBPS must deal with that
are orthogonal to the types of issued de-
scribed above (reliability, integrity, security,
etc), but unique only insofar as the object
paradigm differs from the traditional view
of systems as procedural and monolithic.

Action Management Action manage-
ment is concerned with issues such as se-
rializability, atomicity and permanence. In
particular, it is characterized by the type of
commit system used by the system to insure
the integrity of the objects. In the request
scheme, commits are requested by the ob-
jects. In the transition scheme, commits are
automatically performed by the system as
actions complete. NLTSS was designed for
the supercomputer environment where sys-
tem failures could mean the loss of weeks
worth of computation. It did not do any
type of explicit checkpointing however. In-
stead, it relied on a feature of the hardware
it ran on to dump out a copy of memory to
disk in the event of a failure. NLTSS would
use the process swap file as a backup to that
hardware feature [15].

Synchronization Synchronization is the
method by which serializability is achieved.
Systems may use a pessimistic (only one ac-
tion can access an object at any one time) or
an optimistic (multiple invocations but no
commits until integrity is ensured) scheme.

As noted previously, NLTSS left synchro-
nization up to the application developer.

Security Security ensures that only au-
thorized clients can invoke object meth-
ods. The most common schemes are capa-
bilities (which are little tickets that verify
the bearer is authorized) or control proce-
dures (where incoming invocation requests
are processed by a ”guard” that verifies au-
thorization). NLTSS is a pure capabili-
ties based system. This will be explained
in greater detail below. Other aspects
of NLTSS’s security model were discussed
above.

Reliability Reliability is the ability of the
system to continue to operate when an ob-
ject fails. It is commonly handled through
either object recovery or object replication.
In an object recovery scheme, when an ob-
ject failure is detected it is recreated us-
ing either its last committed state (roll-
back) or its last committed state with all
in progress actions reapplied to the ob-
ject (roll-forward). In an object replica-
tion scheme, multiple copies of the object
are kept such that if one fails, another will
service its requests. This scheme is com-
plicated by the need to have all copies of
an object consistent. NLTSS uses a roll-
forward object recovery scheme that sup-
ported multiple levels of failures. NLTSS is
designed to do a deadstart with a minimal
loss of state [21, 24, 20]. The most frequent
type of failure was when the system got into
some type of inconsistent state. This would

happen anywhere between every few min-
utes (usually due to some type of hardware
or software bug) to every couple weeks. In
this event, a hotstart "DS” would be per-
formed that would simply scan the mem-
ory of the machine and restore all processes
to a known, good state. Every few weeks
to months the errors would be more severe
and require a warmstart "DSU” where the
objects would be restored from the mem-
ory image and process swap files mentioned
above. The most catastrophic failures, the
time between which was measured in years,
required a full coldstart ”DSB”. As with a
warmstart, as much object and process in-
formation that could be restored, would be
[15].

While Chin and Chanson[4] do not dis-
cuss it, it should be noted that NLTSS was
designed with robust communication proto-
cols and distributed exception throwing and
handling mechanisms [21, 24, 20].

3.2.3 Object Interaction Manage-
ment

One of the most important functions of a
distributed object-based programming sys-
tem is managing the interactions between
objects through location transparency, in-
vocation handling and handling failures.

Location of an Object DOBPS are de-
signed to maintain location transparency of
all of its objects. In doing so, it needs a
way to locate objects when it is invoked.
One scheme is to embed the location of the
object in that object’s name. Another is to

use a name server that maps object names
to locations. The third scheme is to keep a
small cache of mappings and if the decided
object isn’t found, broadcast a request for
its location. NLTSS uses a combination of
the encoding and directory server schemes.
NLTSS supports numerous human readable
names for any one object [21, 24]. Each ob-
ject has a single canonical machine readable
name[24] called a capability [16]. This ca-
pability has embedded into it the location
of the object [16]. NLTSS uses a directory
server to map the human readable names
to capabilities. When the directory server
is presented with a human readable name,
it finds the corresponding capability, veri-
fies that the requester is allowed to access
that object and, if so, returns the capabil-
ity [12]. Capabilities are discussed in more
detail below.

System-level Invocation Handling
When one object invokes the method of
another object, it’s the responsibility of
the DOBPS to marshal that invocation
to the proper object. The two primary
schemes used to achieve this are message
passing and direct invocation. NLTSS was
designed to be a pure message passing
system. Any and all object invocations
(even those local to the machine) would
be executed through a message that was
passed to the kernel, then to the kernel
of another node if necessary, and finally
delivered to the desired recipient [21]. Tt
was discovered that the overhead of such
a system (especially the expense of so

many context switches) was too high when
accessing some system objects, particularly
the file server. These select objects were
henceforth incorporated into the kernel.
The message passing protocol remained the
same, the savings was solely in the lack of
context switches between the kernel and
the services as the messages were passed
between them.

Detecting Invocation Failures It is
easy to detect failures that occur before ob-
ject invocation is made (existing faults). Tt
is much more difficult to detect failures that
occur during invocation (transient faults).
It is necessary to do this however lest ob-
jects block indefinitely on an invocation that
will never return. Numerous schemes for
handling transient faults exist from time
outs to invocation probes. NLTSS used a
basic time out scheme to detect faults and
killed processes that were blocked waiting
for a response that would never arrive. This
may have had catastrophic consequences on
the system if the transient fault was located
in a critical server such as a file server or
the process server. On the occasions that
such faults happened, the system typically
had to be restarted.

3.2.4 Resource Management

A DOBPS is particularly concerned with
the interaction between objects and sys-
tem resources, such as object representation
in memory and secondary store, or object
scheduling.

Representation of Objects in Memory
and Secondary Store Objects are per-
sistent if a copy is kept in secondary store
and the object can survive a machine fail-
ure, otherwise the object is volatile. Per-
sistent objects that reside both in memory
and secondary store are considered active,
otherwise the object is only found on disk
and is considered inactive. A DOBPS may
keep either a single or multiple copies of
an object in memory depending on the syn-
chronization scheme. When a persistent ob-
ject is updated, either the entire object can
be rewritten to disk (a checkpoint scheme)
or only the changes since the last time the
whole object was saved can be stored (a log
scheme). All objects in NLTSS are persis-
tent. This was accomplished by virtue of
the capabilities: aslong as a capability to an
object existed, the object could be accessed
(in this respect, the capabilities are like ref-
erences in a programming language). As
explained in the section on action manage-
ment, NLTSS uses a checkpoint type scheme
to backup its process objects.

Object Scheduling and Mobility Ob-
ject scheduling is concerned with what pro-
cessor a given object will reside on. This
may be either explicit (given by the user)
or implicit (determined by the system based
on metrics such as the relative load of ma-
chines). Object mobility is concerned with
how objects are moved from one machine
(such as one with a high load) to a different
machine. NLTSS was designed for the su-
percomputer environment, so its scheduler

10

is a distributed batch scheduler. NLTSS
uses a combination of explicit and implicit
scheduling: the system will schedule the ob-
ject to reside on whichever machine fulfills
the constraints given by the user. The user
may specify such metrics as the amount of
processing time and memory the object will
require, as well as the machine architecture
the object should run on. The user has the
option of specifying which machine the ob-
ject will reside on. NLTSS also has the no-
tion of a priority based on the identity of the
user that submitted the job (so the users in
departments that paid for more of the ma-
chine get preference in scheduling). NLTSS
did not have explicit support for object mo-
bility. In particular, process objects were
tied to one machine once scheduled and the
mobility of other objects (such as files) had
to be handled at the application level. Lit-
tle work was done with object mobility in
NLTSS as there was no support for such a
concept in NLTSS’s predecessor, LTSS and
the NLTSS user community was more inter-
ested in backwards compatibility than new
features [7].

3.3 Other Issues Considered

During the design of NLTSS, other issues
were considered that were not found in the
common literature. They stemmed mostly
from Livermore’s experience in building and
operating large computer operating sys-
tems. They included features to ease the op-
eration of the system such as the ability to
put the system into operator/maintenance
mode, the ability to relocate, backup and

purge objects, status reporting and perfor-
mance monitoring. The designers made
a conscience effort to separate policy and
mechanism. Finally, the designers realized
that system implementations are never per-
fect, so the system had to be easy to debug
through the use of tracing, event logs and
similar features [21, 20].

4 Design & Implementa-
tion

Numerous parts of the design and imple-
mentation of NLTSS were discussed in the
overview above, particularly those parts
than can be compared and contrasted with
other distributed systems. Here we will look
at some of the components of NLTSS in de-
tail.

4.1 Capabilities / Directory
Server

Capabilities are tickets that establish that
the bearer has permission to access some
object. They are a generalization of
capability-list (C-list) operating systems. In
C-list systems, the kernel handles all capa-
bility granting and tracking. This doesn’t
scale well for a distributed system [8], so
the general capabilities mechanism allows
processes to manage their own capabilities.
In NLTSS, capabilities are synonymous with
an object’s machine-oriented name [16].

11

4.1.1 Capability Creation and Use

The capability representing some object is
created at the time that object is created
by the server that creates the object, so the
file server creates a capability for every file
that is created, the process server creates a
capability for every process that is created
and so forth. This capability is passed back
to the object that requested the creation.
The capability is then sent with every access
request to show that the requesting object
is authorized to access the given object [16].
Any capability can be passed to another
user or object so that the other user or ob-
ject can access the object represented by
the capability. This is the mechanism by
which Discretionary Access Control (DAC)
is achieved in NLTSS. The designers of
NLTSS believed that there was an inalien-
able right to pass capabilities. If the sys-
tem tried to disallow capability passing, the
object that was granted a capability could
always act as a broker between the object
that was being accessed and the object that
it thought should be allowed access. This
capability passing can be done without any
server intervention, so it should be done
over a secure channel such that it can’t be
snooped and used by a third party [8].
NLTSS also implemented Mandatory Ac-
cess Control (MAC) by virtue of requiring
all objects to have an associated capabil-
ity and all capabilities to have a declared
protection level (Secret, PARD, Unclassi-
fied, etc.). NLTSS would not allow a user or
process to access any object with a higher
protection level. This was done by means

of flow control on messages at the kernel
level. Each message would have a certain
protection level. The kernel would verify
that messages were only delivered to pro-
cesses with an equal or higher protection
level. The servers would then verify that
the protection level of the contents of every
message was equal to or lower than the mes-
sage, otherwise the message was discarded.
As all data flow took place via message pass-
ing, this mechanism was sufficient to pro-
vide flow control [7].

A user or object can assign arbitrary
human-readable names to the objects that
they hold capabilities for. The capabilities
can then be stored in a directory, allowing
a user to log out or an object to be removed
from memory. The user can then login, or
the object can be reconstructed later and
the capabilities can then be retrieved from
the directory server. Directories can store
any number of capabilities. These capabili-
ties may represent any type of object [8, 12].
Hence, NLTSS allows users to store any-
thing in a directory, not just files. This al-
lows for a natural structure where a process
object, numerous file objects, a network I/0
object and a windows interface I/O object
all representing a single logical job can be
stored together in a directory. Users can
then do things such as easily pass the ability
to check and/or modify the job to others. It
is important to note that directories them-
selves are objects and are hence accessed
with capabilities [8]. This allows directories
to be nested inside other directories, hence
creating a resource graph. This is properly
a directed graph and not a hierarchical tree

12

like the file system in UNIX as a capability
may be stored in any number of directories
by just as many different names. The graph
represents the global namespace and is dis-
tributed among all the Directory Servers in
the system [20]. A directory object can even
be stored in one of its subdirectories, hence
the graph is not acyclic. (This can be sim-
ulated in the UNIX filesystem with links,
however those are either limited to a sin-
gle disk partition or are symbolic and can
be ignored.) Each user has their own root
directory which contains the system directo-
ries they need to have access to underneath
it (as opposed to having the user’s root be
a subdirectory of some global root).

NLTSS provides give and take directories
for each user to facilitate resource sharing.
Any user has the ability to put capabili-
ties into another user’s give directory. That
user, who has sole read access to the direc-
tory, then has access to whatever capabil-
ities were given. Similarly, every user has
a take directory where they have sole write
access and all other users have read access:
this allows that user to publish a resource
for all other users to access [8]. This mech-
anism is similar to, but not as general as
the formal take-grant model, but it achieves
most of the same functionality.

Directories themselves are comprised of
numerous fields in addition to the list of ca-
pabilities that they store. Directories are
labeled with a certain protection level and
access rights, they contain accounting in-
formation such as usage counts, times of
creation and access, and account to charge
for storage space. Additionally, the user

can give each directory a comment up to
48 characters in length. Directories sup-
port functionality similar to disk directo-
ries such as create, delete or list, as well as
some functionality unique to their general-
ized nature, such as reduce access, restore
or change header [12].

4.1.2 Capability Structure

A capability in NLTSS is between 68 and
256 bits in length. It is composed of one 64
bit Network Address and between 4 and 192
bits of additional information. This addi-
tional information includes, at a minimum,
4 bits of protection level information (such
as Secret, Confidential, etc.). As NLTSS
was designed for an environment where clas-
sified work was performed, this information
was considered essential. There were 8 1
bit fields that defined the type of access al-
lowed: Destroy, Modify, Add, Read, Owner,
Free Access and 2 reserved for future use.
The free access bit, also called the inher-
itance bit, is particularly interesting. It
could be set on a directory capability and
given to another process. The receiving pro-
cess would then have access to the capa-
bilities in that directory, but at no higher
level than specified for the directory that
was given. For example, if User A has a di-
rectory with a bunch of working documents
in it (that is, they have Read and Modify
permission), they can give a capability to
that directory to User B with only the read
and Free Access bits set. User B then can
read all the documents in that directory, but
can not modify them. Capabilities also con-

13

tained 2 bits of information about the server
(whether it supports some, all or more fea-
tures than a standard server), 8 bits of infor-
mation on the resource type (File, Account,
Process, Terminal, etc.), 10 bits of reserved
space and up to 160 bits of server dependent
info [16].

4.1.3 Capability Protection

Protection of capabilities through encryp-
tion is optional. Capabilities are encrypted
with a secret key known only to the server.
This is done by encrypting word 1 and word
3 with the server’s secret key using DES
and storing the result into word 2 (words in
NLTSS were 64 bits long) [16]. This scheme
requires that capabilities use all possible 256
bits. While this scheme still leaves capabili-
ties vulnerable to data theft, it prevents in-
advertent modification of the capability and
greatly reduces the chances that an attacker
will guess a valid capability for some object
8].

Alternative methods of protecting the ca-
pability were considered, such as access
lists, encrypted client address and pub-
lic key client address protection, each had
problems in practice though. Access list
protection is where the server maintains a
list of the addresses of clients that are al-
lowed to access each object. Not only is this
approach resource intensive for the server,
but it is susceptible to a reflectivity attack
against the directory server. Encrypted
client address protection embeds the ad-
dress of the client into the capability and
encrypts it using a secret key known only to

the server. This relieves the burden of stor-
ing access information on the server and,
implemented properly, eliminates the sus-
ceptibility to reflexivity attacks. It does this
at the cost of additional CPU time, some-
thing that is at a premium in the supercom-
puting environment. The final protection
also encrypts the client address into the ca-
pability, but does so using public key en-
cryption such that one client can encrypt
the address of another client into the capa-
bility and pass the capability to that client
without going to the server. This reduces
the CPU load on the server, however the
computational expense of public key cryp-
tography, especially given processor tech-
nology in the 1980’s when NLTSS was being
written, made this approach infeasible [8].

4.2 CPU and Process Control

NLTSS supports breaking processes into
lightweight tasks (threads) through the use
of a user level library [20, 5]. This increases
portability and allows the threading imple-
mentation to be modified independent of
the kernel. The kernel itself was developed
as a multitasked process so that multiple
system calls could be handled concurrently
on a multiprocessor system [20]. The CPU
and process control is broken up into two
pieces: the CPU driver and the Process
Server. The CPU driver is the mechanism
that actually controls the CPU. The Process
Server is the process that enforces the pol-
icy by which processes get scheduled. There
is one CPU driver per machine, however a
process server may control the job schedul-

14

ing on multiple machines [5, 1].

4.2.1 CPU Driver

The CPU driver has two tasks. One task
handles the time slicing between multiple
processes. It will perform the context switch
between processes at a given interval (times-
licing). In the event of a significant state
change, such as job completion or failure
this task notifies the process server of the
change. When a job sends a message, this
task will forward the message to the mes-
sage system and either switch to another
process if the sending process has blocked
or allow the process to continue [5]. The
other task in the CPU driver simply receives
new jobs from the Process Server and adds
them to the queue. It also notifies the mes-
sage system of the process’ arrival so that
any queued messages for it can be delivered

[5]-

4.2.2 Process Server

The Process Server handles all the func-
tionality associated with processes, such as
their creation, destruction, forking and in-
terrupt handling. Each process has associ-
ated with it a header that contains infor-
mation such as the conditions under which
it should be halted or notified, protection
level, time elapsed, account to charge, mem-
ory usage, message information, comment
and name. In total, there are 39 fields asso-
ciated with every process [1].

4.3 Message System

NLTSS provides one system call for input
and output. It is the Message system call
[20, 6]. This call was designed to achieve
location independent and efficient commu-
nication, support for shared memory multi-
processing, process protection and domain
separation along with functional simplicity.

4.3.1 Location Independent Com-

munication

The NLTSS message system provides a sys-
tem call that allows processes on the same
computer as well as processes on differ-
ent computers to communicate with each
other. Simply specifying network addresses
in the message call does this. The mes-
sage system provides a transport level in-
terface as defined by ISO model. When
two processes from the same computer are
communicating, bits are copied. When the
processes communicating are on different
computers on the network, packets are ex-
changed. These details are transparent to
the user of the message system call. By
changing the network address used, access
can be changed from local to remote. Sim-
ilarly, programs written to service resource
requests locally can be changed to directly
service equivalent requests from anywhere
in the network. Clearly, NLTSS eliminates
much of the programming work needed to
access services and provide access to ser-
vices in a communication network.

15

4.3.2 Efficient Input/Output

Efficient I/O is achieved by minimizing do-
main change overhead (Cray parlance for a
context-switch) and providing direct access
to the peripherals. NLTSS will only perform
a domain change before a process’ times-
lice is up if computation can no longer pro-
ceed because it is completely blocked wait-
ing for I/O to complete. The message sys-
tem chains multiple I/O requests into a sin-
gle call. Changing to the system domain is
avoided by providing status of I/O requests
directly in the memory of the requesting
process. NLTSS only supports data trans-
fer directly to and from peripherals, hence
avoiding unnecessary copying and buffering
of that data.

4.3.3 Support for Shared Memory
Multiprocessing

With the support of the NLTSS process
server, two or more parallel forked pro-
cesses may share the same memory space.
The NLTSS message system call allows such
forked processes to initiate, control and syn-
chronize both execution as well as I/O for
any number of parallel tasks sharing mem-
ory.

4.3.4 Process Protection and Do-
main Separation

The NLTSS message system call is the only
interface between a process and everything
else outside its memory space. The mes-
sage system guarantees that only data in the
buffer pointed to by Activated Send Buffer

table is available to another process. It also
guarantees that no data in the memory is
externally modified unless it is in the buffer
pointed to by an Activated Receive Buffer
table. The only exception to this rule is
when one process has a capability to an-
other. The NLTSS message system allows
protection levels to be assigned to all data
so high protection data does not get exposed
to processes that cannot provide that pro-
tection.

4.3.5 Functional Simplicity

The NLTSS message system call uses a sin-
gle data structure to keep the call as sim-
ple as possible within the above design con-
straints. The data structure describes each
data transfer, a Send or a Receive, using a
single buffer. The buffer table contains To
and From network addresses, status of an
individual i/o request, three ”action” bits
that describe if the request is to Activate,
Cancel or Wait. There are also quite a
few other bits that can be set to give more
information about the transfer. These in-
clude Done bit, BOM (beginning of mes-
sage), EOM (end of message), Wake bit, etc.

4.3.6 Message System Implementa-
tion

The NLTSS Message System follows the
Rendezvous and Transfer Mechanism [6].
Basic operation of this message system is
as follows:

1. Message sending process activates Send
Buffer Table and the message system

16

looks for a corresponding active Re-
ceive Buffer Table in the receiving pro-
cess.

2. If match is found, this rendezvous leads
to data transfer from Send Buffer Table
to the Receive Buffer Table until one or
the other is exhausted. The exhausted
buffer table is then marked Done which
may lead to waking up of sender or re-
ceiver as required.

3. If no match was found in the receiv-
ing process then the Send Buffer Table
is marked as Send Blocked waiting for
matching receive. The receiving pro-
cess is notified that a message is wait-
ing to be sent to it. When a receive is
activated in the receiving process, the
Receive Buffer Table gets activated and
it first checks if any send is blocked
waiting to it. If so, the message sys-
tem starts the data transfer from Send
Buffer Table to the Receive Buffer Ta-
ble. If not, the Receive Buffer Table is
marked as Receive Blocked waiting for
a matching send. Note that no noti-
fication to the sending process is done
here.

If there is a receiving process waiting with
its Receive Buffer Table for a send, then this
rendezvous is more efficient since the ad-
ditional step of notifying the receiver that
sender is waiting to send is eliminated. This
is more obvious where the rendezvous is be-
tween two processes not on the same ma-
chine. Planning to have the receives acti-
vated before corresponding sends helps with

efficiency.

Transfer of buffered data is asynchronous.
If a send buffer is larger than the matching
receive buffer, send will do a partial data
transfer and wait for subsequent receives to
complete the send. Correspondingly, if the
receive buffer is larger than the send, that
receive only partially completes until more
data can be received. The sender process
could put a special message ending marker
(EOM, Wake) to force the receive to com-
plete.

NLTSS supports transfer to and from ar-
bitrary bit boundaries. Messages sent to de-
vices get transferred directly from the user’s
memory to the device if the device is capa-
ble of the transfer. Direct device transfers
reduce the cost of transfer substantially.

4.3.7 Protocol Compatibility Issues

The NLTSS message system can provide lo-
cal communication by itself, but to com-
municate with other computers, it requires
communication support and protocol com-
patibility at various levels up to and includ-
ing transport level (ISO) [6]. NLTSS sup-
ports the Delta-T transport protocol [19]
and TCP/IP. There were problems with
transport protocols other than Delta-T. For
example, most transport protocols only sup-
port transfer of data in units of 8-bit bytes
but the NLTSS message system interface
supports the transfer of an arbitrary num-
ber of data bits. Additionally, most trans-
port level protocols do not have the con-
cept of protection levels, hence NLTSS users
communicating with such protocols may get

17

only single protection level.

Most transport level protocols are con-
nection oriented in that an explicit connec-
tion open before data transfer and an ex-
plicit connection close after transfer is com-
pleted is expected. For performance rea-
sons Delta-T chose not to explicitly open
and close the connection for data transfer
and the message system follows that trend.
However, the message system also provides
the BOM and EOM bits for functional and
compatibility reasons. These bits mark the
open and close of the connection, respec-
tively.

The NLTSS message system and Delta-T
use a fixed length 64 bit network address.
Each network address uniquely identifies a
communication port associated with a task
or set of tasks in the same process. The net-
work address is broken down into an 8 bit
network identifier, an 8 bit machine identi-
fier, an 8 bit sub-machine identifier, a 16 bit
process identifier and a 24 bit port number
[20]. This may create problems with other
protocols that use extendible or other very
large forms of network addresses.

The communication itself takes place over
streams. Streams are unidirectional con-
nections that are identified by the source
address, destination address and a stream
number. The stream number is similar to
a capability in that knowledge of its value
is necessary to access the stream and it is
designed to be unguessable [20]. Interrupts
and other out-of-band signals are sent on
a separate parallel stream in NLTSS and
Delta-T, as a matter of philosophy. This
is done to keep the protocol and interface

simpler.

4.4 File System

The NLTSS file system provides distributed
file access. The basic goal is to allow
processes on any processor to access files
that reside either locally or remotely. To
some degree, the NLTSS file system was
patterned after Sun’s Network File System
(NFS). However, NFS itself fell short of
the requirements of a file system for a dis-
tributed supercomputer environment [25].
Specifically, NF'S provides remote file access
by keeping the file data in its remote loca-
tion and by transferring it to the request-
ing process in fairly small pieces. While
this strategy usually is sufficient for the re-
quirements of a typical distributed environ-
ment, it is insufficient for the needs of a dis-
tributed supercomputer environment due to
the high-bandwidth characteristics of super-
computers. To use these high-performance
machines efficiently, it is necessary to mi-
grate the data to the processor. Ideally, this
migration is performed at a high speed, and
the migrated data is then cached local to the
processing in order to allow it to be accessed
quickly during computation. The NLTSS
file system provides this functionality.

4.4.1 Utility of a Distributed File

System

The NLTSS file system allows a process on
a given machine to read and write not only
local files, but remote files as well [3]. This
transparent distributed file system capabil-

18

ity is of great utility in a distributed super-
computer environment, in which migrating
certain functionality from number crunch-
ing supercomputers to workstations is a de-
sirable goal. For example, a numerically
intensive calculation can be run on a su-
percomputer, and the resulting data can be
visualized by using graphics software on a
local workstation. By doing this, the su-
percomputer is not burdened with graphics
computations, which are more suited to be
performed on the workstation. Moreover,
the graphics algorithms on the workstation
can use the services of the distributed file
system to access the data on the supercom-
puter in a fairly transparent fashion, with
no greater effort than would be required to
analyze local data. Another example of the
usefulness of the distributed file system was
pointed out by the authors of NLTSS [3].
They observed that the file system allowed
programmers to use a full-featured text ed-
itor on a VAX to directly edit a file on a
Cray, for which the available text editing
facilities were less sophisticated.

4.4.2 The NLTSS File Resource

A disk file under NLTSS is referred to as
a file resource, and is identified by a capa-
bility that authorizes access to it. A file
resource is essentially a record consisting
of several fields [10]. The Body field is
the field of the file resource that contains
the actual file data; it contains unformat-
ted data written there by a customer pro-
cess. The other file resource fields describe
the attributes and location of the Body, and

are collectively referred to as the Header
[2]. The Header consists of the follow-
ing fields: Allocated Length, Altered Flag,
Comment, Fragmented List, Length, Life-
time, Lock Type, Logical Unit, Notification
Address, Physical Unit, Protection Level,
Storage Account, Subtype, Time Last Read,
Time Last Written, Time of Creation, To-
tal Reads, Total Writes, Unique File ID,
Usage Hint and User Checksum [10]. As
can be seen from this list of file resource
fields, a NLTSS file resource encompasses
much more than just the file data.

4.4.3 File Capabilities

A file capability identifies a file resource
and authorizes access to it. In order for a
process to perform any operation on a file,
the process must have a capability for that
file. Each file capability includes the fol-
lowing access bits: Destroy, Modify, Add,
and Read [10]. The process can perform
a given type of operation on the file only
if the corresponding access bit is set. The
Read and Destroy access permissions have
the expected meanings; Read gives the pro-
cess read access to any field of the file re-
source, while Destroy gives the process the
ability to destroy the file. Destroy also gives
permission to revoke capabilities to the file.
The Modify permission gives the process the
ability to modify any field of the file resource
except the Allocated Length field. The Add
permission gives the process the ability to
increase the size of the Body field, which
necessarily includes the ability to alter the
Allocated length field.

19

4.4.4 File System Components

The NLTSS file system performs disk 1/0
through the use of several basic file system
components: file servers, hardware interface
processes (HIPs), I/O interfaces, and disk
drivers.

File Server The file server for a specific
computer is responsible for managing all of
the files on the disks of that computer. The
file server handles the allocation and deallo-
cation of disk space, maintains a catalog of
files currently residing on the disk, manages
file headers, controls access to files using the
access bits of file capabilities, and handles
I/O requests [2, 10]. NLTSS file servers sup-
port fragmented files, can operate in parallel
with the process requesting disk access, and
can reside on a machine other than the one
whose disk is being managed [2]. Also, the
file server was designed to ensure that the
failure of a single disk would not result in
the loss of files.

The file server provides four categories
of functionality: file resource management
(sometimes referred to as file header man-
agement), file access management, I/O re-
quest management, and operations pertain-
ing to the handling of reply monologs [10].
Reply monologs and the NLTSS Control
Monolog Record (CMR) are used to provide
communication between the file server and
the customer process during the process of
file I/O, and will not be described in detail
here. The other three categories will be dis-
cussed briefly.

File resource management encompasses

the following operations: Change, Create,
Create and Write, Destroy, and Interrogate
[10]. Change is used to change a writable
field of a file resource. Create is used to
create a new file. Create and Write is used
to create a read-only file and to write the
(static) data that this file is to contain. De-
stroy, as its name suggests, is used to de-
stroy a file. The final file resource man-
agement operation, Interrogate, is used to
query a readable field of a file resource.

File access management involves the op-
erations New Capability, Reduce Access,
and Set Lock [10]. New Capability provides
the functionality for generating a new capa-
bility to a given file, or to invalidate existing
capabilities. Reduce Access is used to re-
duce the access permissions associated with
the capability to a file. Set Lock is used to
set a lock (pertaining to either read, write,
or read/write operations) on all fields of a
file resource.

[/O request management operations in-
clude Pattern, Supply Server Data Address,
Read, and Write [10]. Read and Write are
used to read data from the Body field of a
file resource or to write data to this field, re-
spectively. Pattern is used to write a spec-
ified pattern over the Body field of a file.
Supply Server Data Address is used to re-
quest the file server to provide a capability
containing the address of the data mover by
which data will be transferred to or from
the customer process.

Disk Driver and I/O Interface The
disk driver is low-level software that controls

20

hardware-specific aspects of the process of
actually reading data from and writing data
to the physical disk hardware. The I/O in-
terface provides a somewhat higher level in-
terface to the low-level disk driver software.
At the time NLTSS was designed, it was de-
cided that the disk driver and interface that
were already resident on the Crays at LLNL
would be retained and incorporated into the
NLTSS file system [11].

Hardware Interface Process (HIP)
Because of the decision to reuse pre-existing
disk driver and interface software, the
NLTSS file system was obligated to repli-
cate the I/O request format expected by
this software. Therefore, an additional level
of software was needed to translate be-
tween NLTSS disk I/O requests and disk
driver I/O requests. This software inter-
face was named the Hardware Interface Pro-
cess (HIP) [11]. Another benefit of this ar-
rangement is that it provides an abstrac-
tion that encapsulates the device specific
code of the device driver and provides a
uniform I/O interface to the HIP. There-
fore, the transition to different disk hard-
ware, for example, would be simplified.
The HIP consists of several different tasks,
which are coordinated with each other using
standard semaphore synchronization mech-
anisms [11].

4.4.5 Input Output Descriptors
(IODs) and Component Inter-
action

IODs Input Output Descriptors (IODs)

are 192-bit data structures that are passed
as messages between NLTSS file servers,
HIPs, and disk driver I/O interfaces, and
which facilitate the communication between
these components. There are four va-
rieties of 10D: a File-Server-to-Disk-HIP
IOD, a Disk-HIP-to-I/O-Interface IOD, an
[/O-Interface-to-Disk-HIP IOD, and a Disk-
HIP-to-File-Server 10D. Although all four
types of IOD are 192 bits in size, the ex-
act structure of the fields that compose each
IOD differs somewhat from type to type
[11].

File System Component Interaction
To illustrate the roles played by the various
components of the NLTSS file system, and
to describe the interactions (via IODs) be-
tween these components, we must consider
what happens during a generic file I/O op-
eration. First, the file server receives a log-
ical I/O request from a customer process.
This request for a data transfer contains a
file capability, the address of the first bit of
data to be transferred, and the total num-
ber of bits to be transferred, the type of
data transfer, and the network addresses to
be used for the transfer [11]. The file server
then examines the file capability and deter-
mines if the requesting process has the req-
uisite permissions to perform the requested
file operation. If so, the file server proceeds
to construct one or more IODs from the

21

data in the logical I/O request. These are
File-Server-to-Disk-HIP 10Ds, and there is
one for each physical disk fragment specified
in the logical I/O request (up to a maximum
of eight fragments) [11]. These IODs are
then transferred to the Hardware Interface
Process (HIP).

The HIP is responsible for translating the
request(s) from the file server into a for-
mat that the disk driver understands. In
addition, it has the crucial role of obtain-
ing the memory addresses within the cus-
tomer process at which the data transfer is
to take place. It obtains these data directly
from the customer process itself, since the
file server has no knowledge of this infor-
mation [11]. Note that this is required only
if the data transfer is a disk-to-memory or
memory-to-disk transfer, and is not neces-
sary for a disk-to-disk transfer (which is just
a file copy, and does not involve any memory
address within the customer process). Like-
wise, for a disk-to-memory or memory-to-
disk transfer, the HIP needs to ”lock down”
the requesting process to prevent it from be-
ing swapped out of memory on a context
switch during the file transfer. It does this
by issuing a privileged message system re-
quest called an I/O Block [11]. Next, the
HIP constructs one or more Disk-HIP-to-
I/O-Interface I0Ds based on the informa-
tion in the File-Server-to-Disk-HIP IODs re-
ceived from the file server (again, there is
one 10D for each fragment). These IODs
(or, as many of them as possible) are then
sent to the I/O interface, which essentially
relays them to the disk driver by placing
them on the disk driver queue.

The completion of disk operations is mon-
itored by the I/O interface. When all of the
physical fragments of a single logical I/O re-
quest are completed, the I/O interface con-
structs a single I/O-Interface-to-Disk-HIP
IOD (regardless of how many fragments
there were), and passes it up to the HIP
[11]. Alternatively, if an error occurs, the
IOD passed up to the HIP indicates this
fact.

When the HIP receives an I/O-Interface-
to-Disk-HIP IOD, it either sends more Disk-
HIP-to-I/O-Interface I0Ds to the I/O in-
terface or, if the entire logical I/O job is
complete, it constructs a Disk-HIP-to-File-
Server IOD to pass back up to the file server
[11]. Of course, if the HIP receives an error
IOD from the I/O interface or detects an
error itself, it will send an error IOD of its
own to the file server. In either case, it then
issues a privileged message system request
called an I/O Unblock , which causes the
locked down process to be released; since
the I/O operation is complete, the customer
process is once again eligible to be swapped
out of memory on a context switch. Upon
receipt of the Disk-HIP-to-File-Server 10D,
the file server can communicate to the cus-
tomer process that the I/O operation is fin-
ished, or that an error has occurred, de-
pending on the content of the IOD. At this
point, the entire logical I/O operation is fin-
ished.

4.4.6 Performance Considerations

In the initial design of the NLTSS file sys-
tem, the file server, hardware interface pro-

22

cess, and driver/interface components of
the file system were all separate processes.
Communication between the processes was
achieved by passing IOD messages through
the NLTSS Message System. Although the
encapsulation achieved in this model is con-
ceptually attractive, these components were
eventually merged due to performance rea-
sons [11]. At first, the file server (FS)
and the hardware interface process (HIP)
were merged into a single process called the
FSHIP. Later in the evolution of the sys-
tem, the driver functionality was incorpo-
rated into the FSHIP as well [11]. In the
FSHIP process, there are two queues, one
to hold the File-Server-to-Disk-HIP TODs
and the other to hold the Disk-HIP-to-File-
Server I0ODs. The FS and the HIP are
part of the same FSHIP process, and these
two queues are shared between both com-
ponents; access control is provided through
semaphore-based synchronization [11].

Although the individual NLTSS file sys-
tem components were merged in the sense
that they were brought into the same pro-
cess space, the codes for the components
remained modularized, thereby preserving
much of the original encapsulation, at least
conceptually. Meanwhile, a performance
enhancement was achieved by converting to
a system with a single file system process
(per physical disk, of course). Such trade-
offs are instructive, and this modification in

design was one of the lessons learned in the
NLTSS experience.

5 Lessons Learned

NLTSS was intended to be a revolution-
ary advance in operating system technology.
For the most part, it succeeded. Of its long
list of goals, most were successfully imple-
mented. The goals that weren’t met were
primarily those for which there was insuf-
ficient user demand, such as encryption of
communication channels or automatic dis-
tributed deadlock detection. The primary
change in the design that came about af-
ter putting the system into action was the
movement of critical services such as the
file server and CPU server into the kernel,
which was a sacrifice made purely to avoid
the context switch overhead to these heav-
ily used services. The NLTSS team made
a conscious effort to keep a clean separa-
tion between these components and the low-
level kernel though in the hopes that given
advances in hardware technology those ser-
vices could one day be moved back into user
space [7]. Tt is suspected that some of these
boundaries were crossed though while the
team was under pressure to provide higher
performance [14].

In retrospect, NLTSS’s features do not
seem very revolutionary by today’s stan-
dards. The methods that NLTSS’s archi-
tects used can be found in most any com-
puter science text that covers distributed
operating systems such as [18]. What is
notable about NLTSS is that addressed is-
sues such as scalability, reliability and in-
tegrity before they were identified as be-
ing issues common to all distributed sys-
tems. Furthermore, NLTSS was more than

23

an academic exercise: it actually supported
a demanding user community for over three
years of production use. Finally, it im-
plemented all these features on the real
memory Cray architecture which was not
amenable to being controlled by an ad-
vanced operating system [15].

During the shutdown ceremony for
NLTSS, Dick Watson attributed its demise
to the widespread acceptance of UNIX.
While NLTSS was backwards compatible
with its predecessor, LTSS, it was not
compatible with UNIX, which many users
demanded[22]. In retrospect, it proba-
bly wasn’t that the users actually wanted
UNIX, just that UNIX was good enough to
perform the tasks that the users required.
While NLTSS was designed to address what
the designers saw as numerous shortcomings
in UNIX, the users didn’t actually use these
advanced features as they were locked into
the LTSS way of doing things. Instead of
taking advantage of the new features, users
complained that operations took longer to
complete and they couldn’t understand the
rational for the change [7]. In the end,
the cost of developing and maintaining an
operating system was just too high when
a version of UNIX that was good enough
was readily available. Eight years after his
speech at the last NLTSS shutdown, Dick
Watson attributed the reason for NLTSS’s
demise was that ”it was too revolutionary,”
it tried to fix all the problems with existing
systems which made it so different from any-
thing else that it never really got accepted
[23].

6 Conclusion

NLTSS was a distributed, object-oriented
operating system based on a pure message
passing kernel and capabilities developed
at Lawrence Livermore National Lab from
the late 1970’s through 1993. As it was
designed to be a full-featured production
level operating system supporting a mul-
ticomputing environment, it had numerous
goals concerning its use of multiprocessing,
message passing, interprocess communica-
tion and distributed processing. Other goals
focused on backwards compatibility, oper-
ational considerations and issues common
to distributed and object-based operating
systems. An overview of the issues in dis-
tributed operating systems and distributed
object-based programming systems was pre-
sented along with how NLTSS addressed
each issue. The design and implementa-
tion of NLTSS with particular regard for
the capabilities & directory server, CPU &
process control, message system, and file
system were covered in detail. Finally, we
looked at what can be learned from NLTSS
in retrospect.

7 Auspices & Acknowl-
edgements

This paper is a personal work of the authors
and was not developed under the auspices
of the United States Department of Energy,
the University of California or Lawrence
Livermore National Lab. Any opinions ex-
pressed herein are solely those of the authors

24

and may or may not reflect the views of
their respective employers or the University
of California, Davis. NLTSS was developed
under the auspices of the United States De-
partment of Energy by Lawrence Livermore
National Lab under contract number W-
7405-ENG-48.

The authors gratefully acknowledge the
assistance of Jed Donnelley, David Fisher,
Donna Mecozzi, Jim Minton and Dick Wat-
son, without whose assistance this paper
would not have been possible.

8 References

References

[1] Ralph Allen. NLTSS process server.
Technical report, Lawrence Livermore
National Laboratory, December 1984.

Charles Athey III, Jeffrey Clark,
James E. Donnelley, Pierre Du Bois,
Donna T. Mecozzi, and James A.
Minton. NLTSS. Lawrence Livermore
National Laboratory, Internal presen-
tation, date unknown.

Charles Athey I1I, Kent Crispin, Pierre
Du Bois, Donna T. Mecozzi, and
James A. Minton. NLTSS/LINCS for a
presentation to Nuclear Software Sys-
tems Division. Lawrence Livermore
National Laboratory, Internal presen-
tation, November 1982.

Roger S. Chin and Samual T. Chanson.
Distributed object-based programming

[5]

8]

9]

[10]

[11]

[12]

systems. ACM Computing Surveys,
23(1), March 1991.

James E. Donnelley. The internal
structure of NLTSS. Technical report,
Lawrence Livermore National Labora-
tory, June 1983.

James E. Donnelley. The NLTSS mes-
sage system: Definition and implemen-
tation for the Cray-1 and Cray X-MP
computers. Technical report, Lawrence

Livermore National Laboratory, May
1984.

James E. Donnelley. Personal commu-
nication, February 16, 2001.

James E. Donnelley and John G.
Fletcher. Resource access control in
a network operating system. In ACM

Pacific 80 Conference, San Francisco,
CA, November 1980.

Invitation to NLTSS shutdown cere-
mony. Lawrence Livermore National

Laboratory, Memorandum, March
1993.

Donna T. Mecozzi. NLTSS file server.
Technical report, Lawrence Livermore
National Laboratory, April 1986.

Donna T. Mecozzi, James A. Minton,
Donald L. von Buskirk, and Joe Requa.
NLTSS disk I/O. Technical report,
Lawrence Livermore National Labora-
tory, July 1988.

James A. Minton.
server.

NLTSS directory
Technical report, Lawrence

25

[13]

[14]

[15]

[16]

[20]

[21]

Livermore National Laboratory, July
1981.

James A. Minton. Personal communi-
cation, February 23, 2001.

James A. Minton. Personal communi-
cation, March 6, 2001.

James A. Minton and David Fisher.
Personal communication, February 16,
2001.

James A. Minton and Donna T.
Mecozzi. What are capabilities? Tech-
nical report, Lawrence Livermore Na-
tional Laboratory, February 1986.

Norm Samuelson. NLTSS account
server. Technical report, Lawrence Liv-

ermore National Laboratory, Septem-
ber 1985.

Mukesh Singhal and Nirnajan G. Shiv-
ratri. Advanced Concepts in Operating
Systems. McGraw-Hill, 1994.

Richard W. Watson. DELTA-T pro-
tocol specification. Technical report,
Lawrence Livermore National Labora-
tory, December 1982.

Richard W. Watson. Working notes:
Motivation, goals and development
strategy of NLTSS. Lawrence Liv-

ermore National Laboratory, Working
notes, July 1987.

Richard W. Watson. The architecture
of future operating systems. Lawrence

22]

23]

[24]

[25]

Livermore National Laboratory, Inter-
nal presentation, January 1989.

Richard W. Watson. Eulogy to NLTSS.
Lawrence Livermore National Labora-
tory, Internal presentation, March 22,
1993.

Richard W. Watson. Personal commu-
nication, January 29, 2001.

Richard W. Watson. Requirements
and architectural features of future
operating systems. Technical report,
Lawrence Livermore National Labora-
tory, circa 1989.

Richard W. Watson. Distributed com-
puting and operating systems for the
supercomputer environment. Technical
report, Lawrence Livermore National
Laboratory, date unknown.

26

